II Semester M.Sc. Degree Examination, July 2017 (CBCS) CHEMISTRY C – 201 : Inorganic Chemistry – II

Time : 3 Hours

Instruction : Answer Question No. 1 and any five of the following.

- 1. Answer any ten of the following :
  - a) How is the overall stability constant of a complex related to its stepwise stability constant ?
  - b) For  $Cu^{2+}/NH_3$  system, the log of the stepwise stability constant are log K<sub>1</sub> = 4.25, log K<sub>2</sub> = 3.55, log K<sub>3</sub> = 2.85 and log K<sub>4</sub> = 2.15. Calculate the overall stability constant of [Cu (NH<sub>3</sub>)<sub>4</sub>]<sup>2+</sup> species.
  - c) The formation of  $[Cu (en)_3]^{2+}$  not observed in solution. Why?
  - d) How do the pi-bonding ligands help in the stabilization of metal complex?
  - e) Which of the two, [Co (Cl)<sub>4</sub>]<sup>2-</sup> and [Co (I)<sub>4</sub>]<sup>2-</sup> is expected to have higher  $\Delta_t$  and why ?
  - f) What are hetero crowns and spherandes ? Give an example.
  - g) Complete the following reactions :
    - i)  $[Co (CN)_6]^{3-} + H_2O \xrightarrow{hv} ?$
    - ii) Co  $[(NH_3)_6]^3 + H_2O \xrightarrow{hv} ?$
  - h) 'Aquation reaction in Rh<sup>3+</sup> and Ir<sup>3+</sup> complexes is very difficult' substantiate.
  - i) On the basis of molecular orbital, explain why the Mn-O distance in  $[MnO_4]^{2-}$  is longer by 3.9 pm than in  $[MnO_4]^{-}$ .
  - j) What are the possible magnetic moments of Co(II) in tetrahedral and octahedral complexes ?
  - k) Illustrate antiferromagnetic coupling.
  - I) What do you mean by nephelauxetic ratio? How does it relates with delocalization of metal ligand bond?

Max. Marks: 70

## 

(2×10=20)

- 2. a) Discuss the structure and different modes of bonding of NO with transition metal complexes.
  - b) Give the ground state terms for  $d^2$  and  $d^7$  systems.
  - c) Explain Laporte and spin selection rule.
- 3. a) With a suitable example, explain the kinetic and thermodynamic stability of metal complexes.
  - b) Discuss the determination of binary formation constant by an ion-exchange method.
  - c) Point out the uses and limitations of CFT.
- 4. a) In what Tanaube Sugano diagrams are different from Orgel diagrams ? Draw Orgel diagram for an octahedral chromium (III) complex. Explain the possible transitions.
  - b)  $[Co (NH_3)_6]^{2+}$  has absorption band at 9000 cm<sup>-1</sup> and 21100 cm<sup>-1</sup>. Calculate  $\Delta_0$  and B for d<sup>7</sup> ion.
  - c) The complexes  $[Co (NH_3)_5 X]^{2+} (X = CI, Br, I)$  have charge transfer to metal bands. Which of these complexes would you expect to have the lowest-energy charge-transfer band? Why? (4+3+3=10)
- 5. a) Depict MO diagram involving sigma orbital for an octahedral complex and discuss the salient features of the diagram.
  - b) Discuss any two spectral evidences for metal ligand covalency in complexes.
  - c) Explain the self-assembly concept and its application in molecular and supra molecular Chemistry. (4+3+3=10)
- 6. a) Discuss the determination of magnetic susceptibility of metal complexes by Gouy method.
  - b) Calculate the crystal field stabilization energies for a d<sup>8</sup> system in octahedral and tetrahedral complexes.
  - c) Represent the different polyhedrons for co-ordination number 7 and 8. (4+3+3=10)

(4+3+3=10)

(4+3+3=10)

## 

- 7. a) Mention the importance of spin-orbit coupling and report a Jabolnskii diagram for an octahedral complex of Cr<sup>3+</sup>.
  - b) Illustrates the variation of redox potentials in photochemical processes.
  - c) Write a note on light-harvesting Antennae. (4+3+3=10)
- 8. a) Explain the inter-and intra-molecular photo process.
  - b)  $K_4$  [NiF<sub>6</sub>] is diamagnetic while  $K_3$ [CoF<sub>6</sub>] is paramagnetic. Account for this.
  - c) State Kasha's rule. Discuss the main principle of Kasha's rule and Stokes shifts. (4+3+3=10)

